# **DEVELOPMENT OF A GENE EXPRESSION SIGNATURE TO DIFFERENTIATE** MALIGNANT MELANOMA FROM BENIGN MELANOCYTIC NEVI

Loren E. Clarke<sup>4</sup>, Carola Berking<sup>1</sup>, Steven Tahan<sup>2</sup>, Christopher R. Shea<sup>3</sup>, Darl D. Flake II<sup>4</sup>, Alexander Gutin<sup>4</sup>, Kathryn A. Kolquist<sup>4</sup>, Anne-Renee Hartman<sup>4</sup>, Benjamin Roa<sup>4</sup> and M. Bryan Warf<sup>4</sup> 1 LMU University of Munich, 2 Beth Israel Deaconess Medical Center, 3 The University of Chicago, 4 Myriad Genetic Laboratories, Inc.

#### **OBJECTIVE**

Develop a gene signature to accurately and objectively differentiate malignant melanoma and benign nevi.

## **METHODS**

## **Melanocytic Tumor Diagnosis**

- Initial diagnosis was obtained from the pathology report accompanying each sample.
- Diagnoses were confirmed by an independent, blinded review by a board-certified dermatopathologist.
- Discordant diagnoses were adjudicated by a third independent board-certified dermatopathologist. • Tumors identified as 'false' negatives by the assay underwent additional diagnostic review by a panel of seven expert dermatopathologists blinded to previous diagnoses and assay score.

#### RESULTS

## **Finalized Gene Signature**

- Used a 23 gene signature to produce a score for each case (Figure 1B).
- The gene signature score discriminated melanoma from nevi with 89% sensitivity and 93% specificity (p-value= $2X10^{-63}$ ; AUC = 95%) (Figure 2A).
- Final distribution of scores ranged from -14.9 to +9.6 (binary cutoff at 0) (Figure 2B).
- During a blinded, independent review by seven expert dermatopathologists, 10 of 24 (42%) 'false' negative cases were given a majority diagnosis of benign.

## Figure 2. Assay Performance



# **Gene Signature Discovery & Development**

- Identified 79 potential gene biomarkers with expression profiles shown to vary in melanoma and/or other cancers.
- Used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to measure expression of the 79 genes in 31 melanomas and 52 nevi.
- Narrowed the panel of candidate genes to 40 based upon 1) ability of each gene to differentiate (AUC >70%) benign from malignant lesions and 2) technical reliability.
- Assessed expression of the 40 candidate genes in 544 melanocytic lesions by qRT-PCR (272 melanomas & 272 nevi).
- Used forward selection in a logistic regression model to identify the subset of genes which most effectively discriminate benign from malignant lesions.
- A refined logistic regression model was then used to generate a single score capable of differentiating benign nevi from malignant melanoma. (Figure 1A).



## **CASE STUDIES**



# RESULTS

# **Cohort Design**

- The final data set consisted of a sample cohort of 464 melanocytic lesions (254 melanomas & 210 nevi) representative of all major histopathologic subtypes (Table 1).
- 80 samples failed to generate a score and were excluded from final analysis. - RNA degradation in archived samples (>5 years old) was a common cause of failure.

## Table 1. Melanocytic Lesions by Subtype

| Туре       | 'Ordinary'<br>nevus | Dysplastic /<br>nevus | Blue nevus | Spitz nevus | Solar lentigo | Overall |
|------------|---------------------|-----------------------|------------|-------------|---------------|---------|
| Ν          | 47                  | 117                   | 64         | 38          | 6             | 272     |
| Male       | 29                  | 48                    | 24         | 24          | 1             | 126     |
| Female     | 18                  | 69                    | 40         | 14          | 5             | 146     |
| Median age | 50                  | 43                    | 46         | 21          | 71            | 43      |
|            |                     |                       |            |             |               |         |
| Туре       | SSM                 | Nodular               | Acral      | LM / LMM    | Other         | Overall |

#### Case 3. Initial Diagnosis: Spitz nevus

Panel Diagnosis: Spitz nevus

Score: Malignant (+2.02)



Case 3 Discussion. While this lesion may be benign, histopathologic examination alone (even by a panel of experts) has been shown to be an unreliable predictor of biologic behavior in tumors such as these (Cerroni et al, Am J Surg Pathol 2010). The malignant score might prompt more thorough review of the case and more conservative management.

## **CONCLUSIONS**

- The identified gene signature, which includes a regulator of cell differentiation and immune response signaling genes, is capable of differentiating benign nevi from malignant melanoma.
- The signature includes genes with known immune function and genes known to regulate cell differentiation.







• The final gene signature provides additive diagnostic information that allows for a more informed diagnosis of melanocytic lesions.

• Results of this study have recently been confirmed in an independent, clinical validation cohort.

